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incorporates the old idea by Emslie (1934) based on 
propagation of electrons along atom strings. HOLZ 
rings of circular shape are thus related to the repeti- 
tion b along the zone axis - as would be the case for 
individual strings. The potential at the string, cf. (2), 
is interpreted as the potential V(j) seen by a strongly 
excited Bloch wave. The resulting increment in 
wavelength is related to the (negative) increment in 
wave vector given by the eigenvalue y(J) [(7)] through 
the kinetic energy. The circular rings correspond to 
Bloch waves with low potential energy, located near 
the atom strings, sometimes called 'tightly bound'. 
Bloch waves with higher potential energy will usually 
display more interference effects associated with 
interference between scattering in different strings 
and the typical HOLZ-line fine structure consisting 
of curved or straight Kikuchi- or Kossel-line seg- 
ments. Our description is equivalent to the theory 
developed by Steeds & co-workers (Steeds, 1983). 

The description is seen to apply to experimental 
patterns taken in reflection as well as in transmission 
and in intermediate configurations, including CBED 
patterns and channeling appearing in Kikuchi pattern 
and surface channeling. 

We thank Professor J. M. Cowley for many valuable 
discussions. Part of the work was supported by NSF 
grant DMR-8510059 and made use of the resources 
of the ASU Facility for High Energy Electron Micros- 
copy, supported by NSF grant DMR-8611609. 
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Abstract 

An analytical expression for the intrinsic peak width 
of three-beam Bragg diffraction involving a surface 
reflection is derived on the basis of the dynamical 
theory of X-ray diffraction. Utilization of this 
expression in peak intensity measurements is proved 
to lead to direct determination of the enantiomorph 
of the triplet structure-factor invariant involved in 
a three-beam Bragg-surface diffraction. Effects of 
polarization on the kinematical peak intensity and on 
the intrinsic peak width are also discussed. 

I. Introduction 

The use of X-ray multiple diffraction for phase deter- 
mination has long been proposed (Lipscomb, 1949). 

* To whom all correspondence should be addressed. 

Investigations on the possibilities of extracting phase 
information from the intensity variation near or at 
the exact multi-beam diffraction position have been 
intensively pursued in recent years. These include the 
work reported by Hart & Lang (1961), Ewald & H6no 
(1968), Colella (1974), Post (1977), Jagodzinski 
(1980), Chapman, Yoder & Collella (1981), Chang 
(1981, 1982), Hgfier & Aanestad (1981), Juretschke 
(1982a, b), Hiimmer & Billy (1982, 1986), Hgfier & 
Marthinsen (1983), Post, Nicolosi & Ladell (1984), 
Chang (1986, 1987), Shen (1986), Thorkildsen (1987), 
Mo, Haubach & Thorkildsen (1988), Shen & Colella 
(1988) and many others. 

Recently, quantitative determination of the phases 
of structure-factor triplets using intensity profiles of 
three-beam (a primary, a secondary and an incident 
beam) diffraction has been demonstrated by Chang 
& Tang (1988) and Tang & Chang (1988). In that 
discussion, Bragg-Laue and Bragg-Bragg types of 
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three-beam interaction were dealt with, where the 
former involved a primary reflection of Bragg type 
and a secondary reflection of Laue type; the latter 
involved only Bragg-type reflections. In addition, the 
enantiomorph associated with the signs of the (triplet) 
phases for noncentrosymmetric crystals [see, for 
example, Ladd & Palmer (1980)] is determined by 
the scaling procedure proposed. Alternatively, an 
experiment for the determination of the enan- 
tiomorph has also been reported very recently 
(Hfimmer, Weckert & Bondza, 1989). The theoretical 
ground on which the experiment is based is given in 
the paper of Hiimmer & Billy (1986). In a three-beam 
diffraction, when either the primary or the secondary 
reflection is of surface type (see Fig. 1), i.e. the corre- 
sponding wavevector is along the crystal surface, 
difficulties arise in the determination of the enan- 
tiomorph. It is the purpose of this paper to provide 
a way of overcoming these difficulties. Consequently, 
a method is proposed for determining the enan- 
tiomorph from the measurement of peak intensities 
of surface three-beam diffractions. 

For convenience, we use in the following the term 
three-beam Bragg-surface diffraction to denote the 
case in which the primary reflection is a symmetric 
Bragg reflection and the secondary is a surface 
reflection. 

2. Theoretical considerations 

Consider a three-beam (O, G, L) diffraction, where 
O, G and L are the incident, the primary and the 
secondary reflections, respectively (see Fig. la) .  
Assume that G is a symmetric Bragg reflection. Fig. 
l (a)  shows the geometry of the three-beam Bragg- 
surface case in reciprocal space, where the three 
reciprocal-lattice points O, G and L are on the surface 
of the Ewald sphere. The reciprocal-lattice vectors of 
the primary and secondary reflections are g and i, 
respectively. According to Chang & Tang (1988), the 
relative intensity distribution of the primary reflection 
G in the vicinity of the three-beam position can be 
written as a function of the azimuthal angle ~o of 
rotation around the vector g as 

I ' C = [ I o ( 3 ) - - I o ( 2 ) ] / I o ( 2 ) = I d + I k ,  (1) 

where /o(3) and /o(2) are the diffraction intensities 
of the G reflection in the three- and two-beam posi- 
tions, respectively. Id and Ik are the dynamical and 
kinematical 

where 

intensities defined as 

Id = 2Pare Q[2(A~o) cos 8 -  rh sin 8] (2) 

lk = a2P 2 (3) 

P=Irlk2Q(IF~_,IIFLI/IFcl)/(2W) (4) 
Q = [(A~0)2 + (r/,/2) 2]-,/2 (5) 

rh = G2IXoJ/ W (6) 

W = kl sin a sin/3 cos 0o (7) 
G2 = k2 yL/  3'0 . (8) 

F is equal to - tea z~ rcV, where re is the classical radius 
of the electron. V and A are the volume of the crystal 
unit cell and the wavelength used. F's are the structure 
factors, which are proportional to the electric suscep- 
tibilities X/4rc  as X = FF. 1 is the modulus of the 
reciprocal-lattice vector !. r/i is the intrinsic peak 
width. 0c is the Bragg angle o f  the G reflection. The 
angles a and/3 are defined in Fig. 1. To and y£ are 
the direction cosines of the O and the L reflected 
beams with respect to the inward crystal surface nor- 
mal. A~o is the azimuthal angle measured from the 
exact three-beam diffraction position, al and a2 are 
the polarization factors which were defined in the 
paper of Chang & Tang (1988) as 

am = a'( + a~ (9) 

with 
a 2 = a ~ + a ~  (10) 

Bo/(1 + cos 220c) 
,,,,, = ~ for o" polarization 

am ]B5 cos 20c/(1 +cos 2 20o) (11) 
l, for 7r polarization 

{ (B~  + B ~ ) / ( 1  + c o s  ~ 2 o ~ )  

~,~ for o- polarization 
a2 = ( B ~ + B ~ ) / ( l + c o s 2 2 0 c )  (12) 

for 7r polarization 

Incident 
Primory 

i Reflection 

I I 

Kert~ [c ~on ~l ~ , ~'L 'u 

i ,*', "'v / 
, , I - I  I 

; , D I I 

I i-... . 
I Cl "'~ ( b )  

Fig. 1. Geometry of three-beam Bragg-surface diffraction in 
reciprocal space: (a) overview; (b) top view. The inset represents 
the diffraction in rear space. 
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where 

Bo = 1 - ( I /k)  2 sin 2 a sin 2/3 

B 3 = ( I /k)  sin a sin/3 [(I /k)  sin a cos/3 sin 00 

+( l / k )  cos a cos 00 - s i n  200] 

B 4 = (l /k)2(cos ot cos 00 

- s i n  a cos/3 sin 00) sin a sin/3 

Bs = cos 200 - B3Ba/[(I/k) sin a sin/3]2 

The phase angle of the structure-factor triplet 
F o - , F L F - o  is 8. The quantity k~ W is the Lorentz 
factor, where k = 1/;X. 

By considering the mosaic spread r/M of the crystal 
and the instrumental broadening tin, we see that the 
convoluted kinematical intensity distribution takes 
the form 

a=nmr(F FO-L FL/IFoFol) = (13) 
Ik-- (A~)2+ (rlr /2)2 , 

where the total peak width r/T = r/i + rib + r/M. 
According to (1), (2), (3) and (13), for two given 

three-beam cases, case A with 8 > 0 and case B with 
8 < 0, the relative intensity I 'c(A) of case A at A~ = 0 
decreases from IK(A) by the amount lid(A)[, while 
I'~(B) of case B increases from Ik(B) by the amount 
II~(B)I. This difference is due mainly to the different 
signs of & If we normalize the experimental intensities 
I'~,E(A) and I'~,E(B) with the calculated intensities 
I'C.T(A) and I'C,T(B) of (1), we obtain 

' Io, r(B)  ~>o. Ib, E(A)/  Ib, r(A)[~>o ° < Io, e( B)/ ' a~=o 

(14) 

Consequently, this leads to the discrimination of the 
enantiomorph. 

If the three-beam diffraction (Q, G, L) involves a 
surface reflection L, difficulty in establishing the rela- 
tion (14) results. This is because, in this case, the 
reciprocal-lattice point L lies on the equator of the 
Ewald sphere (see Fig. l a  and the inset). That is, 
"YL = 0, G2 = 0, and rh = 0. This implies that the con- 
voluted Ik goes to infinity at Atp = 0. An intrinsic peak 
width of zero is physically meaningless. According 
to Chang & Tang (1988), r/~ in (6) has been derived 
on the basis of the first-order approximation of the 
quantity KL. KL in terms of the accommodation ~'. 
To overcome this difficulty of having r h =0 ,  the 
second-order terms of ~ in K£. K£ need to be con- 
sidered in deriving rh. 

From Fig. 1, the wavevector KL of the L reflection 
inside the crystal can be expressed in the following 
vector form: 

KL = l~[k cos 00 sin/3 + k(Aq~) cos 00 cos/3] 

+'iy(kyL + k~) + i~[k  sin a - k  cos 00 cos/3 

-k(Aq~) cos 00 sin/3] (15) 

where ix is normal to the plane containing the points 
O, T and L; iy is perpendicular to the crystal surface. 
In connection with the real part if' and the imaginary 
part ~" of ~', the scalar product K.  KL can be written 
as 

K 2 =  k 2 - 2 W ( k ~ )  + k2(A~) 2 cos 2 0o 

+ k2(~,,2_ ~,,,2) + i2k2~,~,,. (16) 

The corresponding resonance failure ~:£ then takes 
the form 

2 ~ L = ( K 2 - K 2 ) / k  2 

=Xo-F2W(A~) / k2 - (A tp )  2 COS 2 0o 

- ( s t ' 2 -  ~'"2) - i2sr'~ ' '  , (17) 

where 

~'=--(1/8Vo)[alx, lZ-a' lx ,_olq (18a) 

C = Ix01/(2Vo) (18b) 

g=k( l+lXol /2 ) ,  (19) 

according to Chang & Tang (1988). The parameters 
a and a '  are defined, referring to Chang (1984), as 

a = Po/~£, a '= P'o/~£, (20) 

where 

po = ( 8 o .  6L)2 = cos 2/3 (21) 

P~ = (&o .&L) 2 = cos2/3 (22) 

for cr polarization, and 

po=(~to.~rL)2+(~tO.'~L)2= l (23) 
p~= (~ro. 8L) 2 + ( ~ 0 .  ~,)2 

= 1 - c o s  2/3 sin 2 200, (24) 

for 7r polarization. The polarization unit vectors b ' s  
and ~ 's  of the reflections involved are defined in Fig. 
2. At the kinematical peak position (A~p = 0), the real 
part Re [ K  2 -  K~] is equal to 0. This means that at 

L 

C. ^ \ - 0  

6 

Fig. 2. Definition of the unit vectors of polarization. All ,~'s are 
parallel to the OCG plane and the O's satisfy &M x ,~M = K~ 
for M= O, G and L 
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A~ = O, 

2sol = l I , . (2s f l )  = 2  ~"~" 

= IXo/(8~,o2 sfl. )[PoX, 2-pGxL_ol2]. (25) 

The so lu t ion  fo r  s~z. is 

I~:~l=(xol'/~/4~,o)[polx,l=-p~,lx,__ol=]'/~. (26) 

Consequently, the intrinsic peak width r h becomes 

,7;'= Irg=lxol'/ /(2 ,o W)] cos I Ix l - Ix, 
(27) 

for ~r-polarized wavefields, and 

7/7 = [[ K2IXo[ 1/2/(2y0 w)]llxLI 2 -  IxL_al2l 1/2[ (28) 

for rr-polarized wavefields. 
The kinematical intensities at A~ =0 for o-- and 

rr-polarized wavefields, according to (13), are 
O',71" 0-, "n" 

I ~ = 4 a 2  (rl, /~)(rlFo_~llF~l/IFollFol) ~. (29) 

The resultant kinematical intensity lk.r is then equal 
to 

Ik, T=  I°k + I'~. (30) 

Equation (30) can therefore be used for intensity 
normalization. 

3. Experimental 

Bragg-surface three-beam diffraction profiles were 
obtained for the GaAs 200 reflection and Cu Kfl 
radiation using the experimental set up described by 
Tang & Chang (1988). The sample is a plate-like 
GaAs single crystal with the large flat surface parallel 
to the (200) atomic planes. Since the primary reflec- 
tion is 200, all the reflections with the Miller index 

[ 001] 

(1~3) (1L3--•• (1+33) 

~[OlO1 

Fig. 3. Relative positions of the reciprocal-lattice points of {111}, 
{113} and {133} for possible three-beam Bragg-surface diffrac- 
tions. The signs of 6 are also indicated. 

h = 1 are possible surface reflections. Fig. 3 shows the 
relative positions of the reflections {111}, {113} and 
{133} on the equatorial plane, with respect to the 
[100] direction. There are four {111}, eight {113} and 
four {133} three-beam cases. Owing to the two posi- 
tions, IN and OUT (see Fig. 1 b), for each three-beam 
diffraction during a 360 ° azimuthal rotation, the num- 
ber of diffraction cases is doubled. Measurements on 
peak intensities Ip = lb(Atp -- 0) and full-width T/r at 
half maximum were made for all the three-beam 
reflections mentioned above. In order to minimize 
the errors due to the possible distortion of the Ewald 
sphere caused by the nonuniformity in dispersion of 
the incident beam, the data were averaged over each 
IN-OUT pair. Table 1 lists the peak positions ~o, the 
peak intensities Ip, the widths ~T, the averaged 
experimental [k,~, the calculated intensities Ik, T, the 
ratio [k,~/Ik, r ,  and the calculated phase angle 6. The 
intensity ratio Tg, E/ lk, r versus 2a~/ a2P, the quantity 
proportional to Id/ Ik ,  is plotted in Fig. 4; the average 
values of [k, J Ik, T are indicated by the horizontal 
lines. 

4. Results and discussions 

According to (14), a comparison between the normal- 
ized intensities should, in principle, lead to the dis- 
crimination of the enantiomorph. This is actually the 
case for the {111} and {133} three-beam diffractions. 
As can be seen in Figs. 4(a) and (c), the horizontal 

iK,E/IK.T 

5400~ (a) (133)- x 

/ 

 2°°L 1 
sooo L (1~3)- × | 

.oo  , . / 

/ , ~ ,  ( 1 1 3 ) + _ x ~ ( 1 1 3 ) -  
1700  F [oj -.x .(1~_3) - ] 
1600F . . . . . . . . . . . . . .  .(1N )- >j-.--{ 131)+ J 

" - - ' ~ X  . . . . . . . . . . .  ,,ooF x-/,,3,+ / 
1400~ (13i)+--x / 
1300~ / 

I I , , / 

700L (c) x (111)- 
/ 

680~ ' x (111)- 
660 F . . . . . . . . . . . . .  -~'-il-{Ti+ . . . . . . . . . . . . . . . . .  
640~ 

620~ m x (111)+ , m 

0.10 0.20 0.30 0.40 

2al / a2 P 

Fig. 4. Plots of f~E/lk, T versus 2a~/a2P for enantiomorpb determi- 
nation. 
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Table 1. Summary of  the measurements and related calculations (q~ = 0 corresponds to the position where [001] 
coincides with the plane of  incidence; I: IN, O: OUT position) 

T~T 
L q~ (°) le (0"01°) "[k,e lk.v( X lO -4) "[k,E/lk,T 3(°) 

l l l  39"85 (I) 16"11 3"26 16"17 225"5 717 -76 
230"15 (0) 16"22 3"33 

l l i  219"85 (I) 14"87 3"39 15"02 222"1 676 -76 
50"15 (0) 15"16 3"31 

lIT 309"85 (I) 15"66 3"43 14"37 217"3 661 96 
140-15 (0) 13"08 3"54 

111 129"85 (I) 13"06 3"40 12"96 214"3 605 96 
320" 15 (O) 12"85 3"68 

113 87"24 (I) 2"96 3"61 2"96 169-7 1744 -74 
309"63 (O) 2.49 4"21 

113 230.37 (I) 3"55 3"59 2"51 149-94 1680 97 
92-76 (O) 2-52 4-18 

l i i  267"24 (I) 3-00 3-40 3.00 18.02 1665 -74 
129"63 (O) 2"54 4"36 

13i 320"37 (I) 2"57 3"50 2-50 15-39 1624 -74  
182.76 (O) 2.50 3"98 

131 357-24 (I) 2-99 3"40 2"99 18"37 1628 97 
219"63 (O) 3"27 4.22 

131 140-37 (I) 3"17 3"67 2"48 15"63 1587 -74 
2.76 (O) 2-48 3-92 

1i3 50"37 (I) 3"20 3"39 2"35 15-34 1531 97 
272"76 (O) 2.35 4.07 

13i 177.24 (I) 2.64 3"28 2"64 19"04 1387 97 
39"63 (O) 3"17 4"29 

133 194"40 (I) 1"06 3"93 1"06 1"993 5319 -70 
75.60 (O) 1.06 4.66 

133 14-40 (I) 1" 16 3"68 1"02 2"050 4976 -70 
255"60 (O) 0"88 4"67 

133 104" 40 (I) 1.08 3" 89 0.99 2.049 4832 94 
345"60 (O) 0"90 4-58 

133 284.40 (I) 1"04 3-94 0-94 2-049 4588 94 
165-60 (O) 0"83 4"54 

The values of 2al/a2P are 0.166, 0.291, and 0.401 for {111}, {113} and {133}, respectively. 

lines at the average values of  ik, E/Ik, T separate unam- 
biguously the three-beam diffractions with 6 < 0 from 
those with ~ > 0. This separation is, however, not very 
clear in the {113} case. InFig .  4(b), there are three 
reflections, 113, 131 and 131, having incorrect signs 
in 3. This is probably due to the fact that one of each 
IN-OUT pair of this {113} reflection is close to the 
peak position of a {111} reflection so that the {113} 
intensity is affected considerably. 

In the theoretical considerations given above, it is 
interesting to note that, in Bragg-surface three-beam 
diffraction cases, the intrinsic peak width is nominally 
proportional to X 3/2 while in Bragg-Bragg and Bragg- 
Laue cases, referring to Chang & Tang (1988), r/i is 
a function ofx. Moreover, according to (27) and (28), 
for particular Bragg-surface diffractions, like the cases 
discussed above, with IXLI = IXL-ol, the o'-polarized 
wavefields affect the rti value very little. Thus the 
7r-polarized wavefields are the main contributors to 
the intrinsic peak width. All these points are the 
consequence of the approximation Re [K 2 -  K~] = 0, 
used in the derivation. More precisely, it should be 
read that Re [K 2 - K~] approaches a minimum value. 
Improvement on the theory can be made by looking 
for a better approximation for Re [K 2 -  K~.]. 

In conclusion, we have derived the expressions, 
(27) and (28), for the intrinsic peak width of three- 

beam Bragg-surface diffraction. With these expres- 
sions, the kinematical intensity can easily be calcu- 
lated. Experimentally, we have demonstrated that the 
measured peak intensities normalized by the calcu- 
lated intensities lead to direct determination of the 
enantiomorph. Utilization of this particular Bragg- 
surface diffraction peak for enantiomorph discrimi- 
nation certainly amplifies the applicability of the 
X-ray multiple diffraction technique for phase deter- 
mination. 

The authors are indebted to the National Science 
Council for financial support. SSC and MTT are also 
grateful to the same organization for providing gradu- 
ate fellowships. 
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Abstract 

Earlier papers [Willis (1986). Acta Crvst. A42, 
514-525; Schofield & Willis (1987). Acta Cryst. A43, 
803,-809] have discussed the nature of the thermal 
diffuse scattering (TDS) arising from the interaction 
of a 'white' beam of thermal neutrons with the acous- 
tic modes of vibration in a single crystal. A simpler 
version of the scattering theory is now given which 
does not have recourse to the numerous equations 
employed in previous treatments. The theory is 
applied to the interpretation of TDS data from BaF2 
and CaF2 to give the velocity of sound in these crystals 
as a function of the direction of propagation. 

I. Introduction 

This paper is concerned with the scattering of pulsed 
neutrons, where each pulse contains a wide band of 
neutron wavelengths, by acoustic phonons in a single 
crystal. The theoretical treatment for monochromatic 
neutrons, scattered by phonons through a variable 
angle, has been covered by Seeger & Teller (1942), 
Waller & Froman (1952) and Lowde (1954). The 
pulsed neutron case, dealing with a white beam of 
neutrons scattered at a fixed angle, has unusual 
features which do not .occur in the monochromatic 
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case. These features give rise to the possibility of 
carrying out novel inelastic experiments, as we shall 
describe later. 

The main features of the scattering theory for 
pulsed neutrons have been described by Willis (1986) 
and by Schofield & Willis (1987). For slower-than- 
sound neutrons, scattered at a fixed angle close to 
180 ° (i.e. in back scattering), there is a wavelength 
window in the incident beam for which thermal 
diffuse scattering is forbidden. One edge of the win- 
dow is associated with the absorption of acoustic 
phonons, and the other edge with their emission. By 
measuring the cut-off wavelengths for different angles 
of offset from the Bragg position, it is possible to 
determine the velocity of these acoustic phonons as 
a function of their direction of propagation. Earlier 
results from pyrolytic graphite have been given by 
Willis, Carlile, Ward, David & Johnson (1986). 

In the next section we show how the principal 
results of the scattering theory can be derived using 
simple geometrical arguments alone. It is assumed 
that the crystal is elastically isotropic, whereas all 
crystals (including cubic crystals) are elastically 
anisotropic. For this reason the analysis is extended 
in §3 to the anisotropic case. Experimental results on 
the isomorphous crystals barium fluoride and calcium 
fluoride, which have different degrees of elastic 
anisotropy, are presented in § 4. 
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